

INSTITUT 812220 FOR METEOROLOGIE U. KLIMATOLOGIE DER TECHN. UNIVERSITAT

S MANNOVER . HERRENHAUSER SYR. 2

FLUID MECHANICS AND THERMODYNAMICS OF OUR ENVIRONMENT

S. ESKINAZI

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING SYRACUSE UNIVERSITY SYRACUSE, NEW YORK

ACADEMIC PRESS New York San Francisco London 1975 A Subsidiary of Harcourt Brace Jovanovich, Publishers

Contents

Preface

1 The Nature of Our Physical Environment

1.1	The Earth		1
1.2	The Atmosphere		3
1.3	The Oceans		8

2 Fundamental Concepts of the Earth and the Geofluid

2.1	Introduction	13
2.2	Solid, Liquid, and Gas	14
2.3	System, Property, and State	15
2.4	Properties in a Continuum	16
2.5	The Earth and Its Gravitational Effects	18
2.6	The Geopotential	24
2.7	The Geopotential Height	25
2.8	The Temperature	26
2.9	Density, Specific Weight, Specific Gravity, and Specific Volume	29
2.10	The Equation of State	30
2.11	Coefficients of Compressibility, of Thermal Expansion, and of	
	Tension	33
2.12	Compressible and Incompressible Substances	35
2.13	The Perfect Gas Law, the Atmosphere and Its Constituents	37
2.14	Water Vapor	38
2.15	Metastable Thermodynamic Equilibrium	42
2.16	Humidity	43
2.17	Wet Bulb Temperature and the Determination of Humidity	48
2.18	The General Behavior of Winds and Currents	50

vii

3 Basic Principles of Heat Transfer— Energy Balance of the Environment

3.1	Modes of Heat Transfer	54
3.2	Radiation Absorption	60
3.3	Heat Balance of Earth and the Atmosphere	67
3.4	The Greenhouse Effect of the Atmosphere	73
3.5	Heat Balance of the Oceans	78

4 Static Equilibrium of the Environment

4.1	Introduction	83
4.2	Body and Surface Forces	84
4.3	The Concept of Pressure	86
4.4	The Hydrostatic Equation	87
4.5	Vertical Pressure Variation in the Atmosphere and Oceans	89
4.6	Importance of Hydrostatic Equilibrium in a Moving Environment	93
4.7	Units of Pressure	94
4.8	Density Variation with Altitude	94
4.9	Mechanical Equilibrium	94
4.10	Thermodynamic Equilibrium	97
4.11	Stability of the Environment	98
4.12	Vertical Displacement Due to Buoyancy	107
4.13	Adiabatic Conditions	109
4.14	Comparative Stability Postures	110
4.15	Formation of Clouds	112
4.16	Clouds and Cloud Exclusion	113
4.17	The Potential Temperature	118
4.18	Effects of Large-Scale Vertical Motion on Lapse Rate and on	
	Stability	120
4.19	Variation of Lapse Rate and Temperature Due to Vertical Motion	122
4.20	Types of Coordinates, Diagrams and Charts Representing	
	Thermodynamic Processes of the Atmosphere	125
4.21	The Pseudoadiabatic Chart	129

5 Basic Principles of Surface Tension

5.1	Introduction	132
5.2	Mechanical Equilibrium of the Free Surface	134
5.3	Mechanical Equilibrium of an Interface between Two Phases	136
5.4	The Hanging Drop	138
5.5	Energy Considerations	139

Contents

6 Kinematics of the Environment

6.1	Introduction	142
6.2	Classification of Types of Motion	143
6.3	Streamline, Stream Filament, Stream Tube, and Stream Surface	146
6.4	The Integral and Differential Forms of the Continuity Equation	150
6.5	Stream Function in Two-Dimensional Flows	153
6.6	Linear Combination of Flows	156
6.7	Pathlines and Streaklines	158
6.8	Pathlines and Streaklines in the Presence of Simple Atmospheric	
	Disturbances	161
6.9	Rotation in the Environment	173
6.10	Rotation–Vorticity	174
6.11	Irrotational Motion—The Velocity Potential	178
6.12	The Free Vortex	180
6.13	Tempest in a Teacup	181
6.14	The Concept of Circulation	182
6.15	Influence of the Earth's Rotation on the Rotation of the Geofluid	185

7 Dynamics of the Environment

7.1	Introduction	19	12
7.2	The Acceleration on a Rotating Earth	19	13
7.3	The Geometry of the Coriolis Acceleration	19	17
7.4	The Time Rate of Change	20)0
7.5	The Acceleration	20)2
7.6	Dynamical Equations for the Environment	20)4
7.7	Criteria for Orders of Magnitude Consideration	20)8
7.8	Buoyancy Effects	21	0
7.9	The Coriolis Acceleration and the Deflecting Force	21	5
7.10	Zonal Flow Parallel to Latitude Circle	21	5
7.11	The Equation of Motion in Terms of Vorticity	21	8
7.12	Basic Principles of Turbulence	22	23
7.13	Dynamical Models of the Atmosphere and Oceans	23	10

8 Geostrophic Motion and Applications

8.1	Introduction	232
8.2	Frictionless Flow—Euler's Equation and Its Integration	232
8.3	Pressure in the Continuity Equation of the Environment	239
8.4	Horizontal Wind and Current with Negligible Acceleration	240
8.5	The Thermal Wind and Current	247
8.6	Horizontal Geostrophic Motion with Centrifugal Acceleration-	
	Gradient Wind or Current	251

ix

Co	nte	nts
----	-----	-----

8.7	Motion in the Circle of Inertia-Inertia Currents and Winds	254
8.8	Wave Motion in the Environment-Zonal Currents	257
8.9	The Rate of Change of Circulation	261
8.10	Application of Kelvin's Theorem to a Baroclinic Environment	267

9 The Frictional Shear Layer—The Boundary Layer

9.1	Introduction	275
9.2	The Basic Dynamical Equations of the Neutral Boundary Layer	276
9.3	The Ekman Layer of the Ocean-Pure Drift Currents	278
9.4	The Atmospheric Boundary Layer—Vertically Stable	285
9.5	The Unstable Boundary Laver	296

10 Certain Applied Problems in the Environment

10.1	Introduction	303
10.2	The Thermal Plume	304
10.3	The Fully Developed Hurricane	334
10.4	Dynamics of a Balloon in a Hurricane or a Tornado	348
10.5	Munk's Generalized Approach to Wind-Driven Water Circulation	352
10.6	Baroclinic Secondary Flow in Estuaries	359

Appendix A Basic Concepts of Vector Analysis

A.1	Scalars and Vectors		365
A.2	Vectors in Orthogonal Coordinate Axes		366
A.3	Addition and Subtraction of Vectors	1	368
A.4	Multiplication of a Vector with a Scalar		369
A.5	Linear Relation of Coplanar Vectors		370
A.6	Unit Vector and Vector Addition of Components		370
A.7	The Product of Vectors		372
A.8	The Scalar Product		373
A.9	The Vector Product		374
A.10	The Triple Scalar Product		378
A.11	The Triple Vector Product		379
A.12	Vector Function of a Scalar		381
A.13	Differentiation with Respect to a Scalar Variable		382
A.14	Differentiation Rules		383
A.15	The Gradient of a Scalar Function		384
A.16	The Dot Product of a Vector with the Operator ∇		387
A.17	The Cross Product of a Vector and the Operator ∇		388
A.18	The Divergence of a Vector		389
A.19	The Curl of a Vector		391
A.20	Invariance of the Vector Operator		393

x

Contents

A.21 A.22 A.23	Condition for a Vector to Be the Gradient of a Scalar Function The Line Integral Oriented Surface	394 394 395
A.24	Stokes's Theorem-Line and Surface Integrals	396
A.25	The Divergence Theorem—Gauss's Theorem	398
A.26	Consequences of Gauss's Theorem	400
A.27	The Indefinite or Dyadic Product	401
Appendix B Standard Environmental Data		403
References		

Index

xi

413